Gradient Descent


Gradient Descent 알고리즘을 enuSpace-Tensorflow를 이용하여 실행 결과입니다.


enuSpace-Tensorflow는 C++ 기반의 API를 이용하여 그래픽 블럭으로 구성되었습니다. Tensorflow의 C++ API를 이용하여 구현하시는 분은 아래링크를 참고하세요.

API 가이드 : https://expnuni.gitbooks.io/enuspacetensorflow/content/


참고 : https://hunkim.github.io/ml/ (모두를 위한 머신러닝/딥러닝 강의)

참고 : https://medium.com/@peteryun/ml-%EB%AA%A8%EB%91%90%EB%A5%BC-%EC%9C%84%ED%95%9C-tensorflow-3-gradient-descent-algorithm-%EA%B8%B0%EB%B3%B8-c0688208fc59

Python를 이용한 구현

import tensorflow as tf

x_data = [1., 2., 3.]
y_data = [1., 2., 3.]

W = tf.Variable(tf.random_uniform([1],-10.0, 10.0))

X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

hyphothesis = W * X

cost = tf.reduce_mean(tf.square(hyphothesis - Y))

descent = W - tf.mul( 0.1, tf.reduce_mean(tf.mul( (tf.mul(W,X)-Y), X ) ))

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

for step in range(20):
    sess.run(W.assign(descent), feed_dict={X:x_data, Y:y_data})
    print( step, sess.run(cost, feed_dict={X:x_data, Y:y_data}), sess.run(W))

enuSpace-Tensorflow를 이용한 구현

Tensorflow의 그래픽 컴포넌트를 이용하여 위와 동일한 코드를 그래픽 컴포넌트를 이용하여 로직을 구성하여 실행한 결과는 아래 그림과 같다. 

X의 초기값에 {1.0f, 2.0f, 3.0f} 입력시 출력 Y {1.0f, 2.0f, 3.0f}에 해당하는 W값을 구현하는 로직이다.

자세한 알고리즘에 대한 설명은 https://hunkim.github.io/ml/ (모두를 위한 머신러닝/딥러닝 강의)를 참고하시기 바랍니다.

ApplyGradientDescent 블럭을 이용한 구현 예시

ApplyGradientDescent Equation (var = var - alpha*delta)


Multi Variable Linear regression 구현 예시

아래의 테이블의 값을 이용하여 W, b의 찾기 위한 그래픽 블럭을 구성하여 예상된 가중치와 바이어스값을 확인.

X1X2X3Y
152179
151222110
351323135
44524171
51553199
6447120
121727132
62028135

미리계산된 W, Bias 값 (W1 = 1, W2 = 2, W3= 3, Bias = 5)

Hypothesis Using matrix

H(x1, x2, x3) = x1w1 + x2w2 + x3w3

Multi variable Python 코드 구현예시

x_data = [[1., 5., 21.], [15., 12., 22.],
         [35., 13., 23.], [4., 45., 24.], [5., 15., 53.],
         [6., 44., 7.], [12., 17., 27.], [6., 20., 28.]]
y_data = [[79.], [110.], [135.], [171.], [199.], [120.], [132.], [135.]]


# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 3])
Y = tf.placeholder(tf.float32, shape=[None, 1])

W = tf.Variable(tf.random_normal([3, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

# Hypothesis
hypothesis = tf.matmul(X, W) + b

그랙픽 블럭 구성 및 실행 결과


W1, W2, W3의 값이 1, 2, 3의 값으로 수렴, Bias 값 5로 수렴

초기값 설정

X = {{1,5,21},{15,12,22},{35,13,23},{4,45,24},{5,15,53},{6,44,7},{12,17,27},{6,20,28}}

Y = {{79 },{110},{135},{171},{199},{120},{132},{135}}

W 초기값 = {{1.5,3.5,0.5}}

b 초기값 = {{0.5}}

ApplyGradientDescent alpha 값 = 0.001



+ Recent posts